2005.04215v1 [cs.DC] 7 May 2020

arXiv

funcX: A Federated Function Serving Fabric for Science

Ryan Chard Yadu Babuji Zhuozhao Li
Argonne National Laboratory University of Chicago University of Chicago

Tyler Skluzacek Anna Woodard Ben Blaiszik
University of Chicago University of Chicago University of Chicago

Ian Foster Kyle Chard
Argonne National Laboratory and University of Chicago and Argonne
University of Chicago National Laboratory
ABSTRACT efficiently executed on remote computers [25, 28, 32, 35, 45]. As we

Exploding data volumes and velocities, new computational meth-
ods and platforms, and ubiquitous connectivity demand new ap-
proaches to computation in the sciences. These new approaches
must enable computation to be mobile, so that, for example, it can
occur near data, be triggered by events (e.g., arrival of new data),
be offloaded to specialized accelerators, or run remotely where
resources are available. They also require new design approaches
in which monolithic applications can be decomposed into smaller
components, that may in turn be executed separately and on the
most suitable resources. To address these needs we present funcX—
a distributed function as a service (FaaS) platform that enables
flexible, scalable, and high performance remote function execution.
funcX’s endpoint software can transform existing clouds, clusters,
and supercomputers into function serving systems, while funcX’s
cloud-hosted service provides transparent, secure, and reliable func-
tion execution across a federated ecosystem of endpoints. We moti-
vate the need for funcX with several scientific case studies, present
our prototype design and implementation, show optimizations that
deliver throughput in excess of 1 million functions per second, and
demonstrate, via experiments on two supercomputers, that funcX
can scale to more than more than 130 000 concurrent workers.

1 INTRODUCTION

The idea that one should be able to compute wherever makes the
most sense—wherever a suitable computer is available, software
is installed, or data are located, for example—is far from new: in-
deed, it predates the Internet [23, 38], and motivated initiatives
such as grid [26] and peer-to-peer computing [37]. But in practice
remote computing has long been complex and expensive, due to, for
example, slow and unreliable network communications, security
challenges, and heterogeneous computer architectures.

Now, however, with ubiquitous high-speed communications,
universal trust fabrics, and containerization, computation can oc-
cur essentially anywhere. Commercial cloud services have em-
braced this new reality [50], in particular via their function as a ser-
vice (FaaS) [16, 27] offerings that make invoking remote functions
trivial. Thus one simply writes client.invoke(FunctionName="F",
Payload=D) to invoke a remote function F(D). The FaaS model al-
lows monolithic applications to be transformed into ones that use
event-based triggers to dispatch tasks to remote cloud providers.

There is growing awareness of the benefits of decomposing
monolithic science applications into functions that can be more

move towards this reality, it becomes easy for scientists to place
computations wherever it makes the most sense, and to then move
those computations between resources. For example, physicists at
FermiLab report that a data analysis task that takes two seconds
on a CPU can be dispatched to an FPGA device on the Amazon
Web Services (AWS) cloud, where it takes 30 ms to execute, for
a total of 50 ms once a round-trip latency of 20 ms to Virginia
is included: a speedup of 40x [22]. Such examples can be found
in many scientific domains; however, until now, there has been
no universal and easy-to-use way to remotely execute and move
functions between resources.

Unfortunately, existing FaaS systems are not designed to be
deployed on heterogeneous research cyberinfrastructure (CI) nor
are they designed to federate resources. Further, existing CI is not
designed to support granular and sporadic function execution. For
example, existing CI typically expose batch scheduling interfaces,
use inflexible authentication and authorization models, and have
unpredictable scheduling delays for provisioning resources, to name
just a few challenges. We are therefore motivated to overcome these
challenges by adapting the FaaS model to research CI with the aim
to enable reliable computation of granular tasks (i.e., at the level of
programming functions) at scale across a diverse range of existing
CI, including clouds, clusters, and supercomputers.

To explore this approach we have developed a distributed, scal-
able, and high-performance function execution platform, funcX,
that adapts the powerful and flexible FaaS model to support science
workloads across federated research CI, a model that is not achiev-
able with existing FaaS platforms. funcX is a cloud-hosted software
as a service (SaaS) system that allows researchers to register Python
functions and then invoke those functions on supplied inputs on
remote CL. funcX manages the reliable and secure execution of func-
tions on remote CI, provisioning resources, staging function code
and inputs, managing safe and secure execution sandboxes using
containers, monitoring execution, and returning outputs to users.
Functions can execute on any compute resource where funcX’s
endpoint software, a funcX agent, is installed and that a requesting
user is authorized to access. funcX agents can turn any existing
resource (e.g., laptop, cloud, cluster, supercomputer, or container
orchestration cluster) into a FaaS endpoint.

The primary novelty of funcX lies in how it combines the extreme
convenience of FaaS with support for the specialized and distributed
research ecosystem. On-demand remote computing, of which Faa$S
is an implementation, has motivated initiatives such as grid [26],

Condor [47], peer-to-peer computing [37], and Remote Procedure
Call (RPC) implementations. The cloud-based FaaS that dominates
in industry innovates by enabling on-demand function execution
on cloud datacenters. Open source FaaS systems enable function
execution on a single computer or container orchestration system [6,
9,17, 46].

funcX is the first federated FaaS system that enables execution of
functions across heterogeneous, distributed resources. Building on
a hybrid cloud model that combines user-managed endpoints and
a reliable cloud management service, it implements a multi-layered
and reliable communication model to overcome the unreliability of
distributed endpoints; supports heterogeneous resources with vari-
ous cloud and batch scheduler interfaces, container technologies,
and unpredictable provisioning delays; integrates with the research
identity and data management ecosystem providing access via stan-
dard web authorization protocols; and includes performance opti-
mizations focused on addressing the unique challenges associated
with this federated FaaS model. funcX thus serves as a foundational
research platform on which a range of new applications can be
developed and research opportunities explored, from multi-level
function scheduling and hybrid cloud-edge computing, to scalable
data management and integration of accelerators.

The contributions of our work are as follows:

o The distributed and federated funcX platform that can: be
deployed on research CI, dynamically provision and manage
resources, use various container technologies, and facilitate
secure, scalable, and distributed function execution.

e Design and evaluation of performance enhancements for
function serving on research CI, including memoization,
function warming, batching, and prefetching.

o Experimental studies showing that funcX delivers execution
latencies comparable to those of commercial FaaS platforms
and scales to 1M+ functions across 130K active workers on
supercomputers.

o Discussion of our experiences applying funcX to real-world
use cases and exploration of the advantages and disadvan-
tages of Faa$ in science.

The rest of this paper is as follows. §2 describes requirements
of FaaS in science. §3 presents a conceptual model of funcX. §4
describes the funcX system architecture. §5 evaluates funcX perfor-
mance. §6 reviews funcX’s use in scientific case studies. §7 discusses
related work. Finally, §8 summarizes our contributions.

2 REQUIREMENTS

Our work is guided by the unique requirements of FaaS in science.
To illustrate these requirements we present six representative case
studies: scalable metadata extraction, machine learning inference
as a service, synchrotron serial crystallography, neuroscience, cor-
relation spectroscopy, and high energy physics. Figure 1 shows
function execution time distributions for each case study. These
short duration tasks exemplify opportunities for FaaS in science.
We summarize by highlighting requirements for Faa$ in science.
Metadata extraction: The effects of high-velocity data expan-
sion are making it increasingly difficult to organize, discover, and
manage data. Edge file systems and data repositories now store
petabytes of data which are created and modified at an alarming

0.70 0.75 1.75 1.80 1.85 2.0 21
Task duration (s

50 55

T 40
=
2
S 20
a

0

5 6 20 40
)

(a) tabular file (b) MNIST digit (c) DIALS stills (d) tomographic (e) Coffea
extraction prediction process preview analysis

(e) correlation
spectroscopy

Figure 1: Distribution of latencies for 100 function calls, for
each of the six case studies described in the text.

rate [39]. Xtract [44] is a distributed metadata extraction system
that applies a set of general and specialized metadata extractors,
such as those for identifying topics in text, computing aggregate
values from tables, and recognizing locations in maps. To reduce
data transfer costs, Xtract executes extractors “near” to data, by
pushing extraction tasks to the edge. Extractors are implemented
as Python functions, with various dependencies, and each extractor
typically executes for between 3 milliseconds and 15 seconds.

Machine learning inference: DLHub [19] is a service that sup-
ports ML model publication and on-demand inference. Users deposit
ML models, implemented as functions with a set of dependencies,
in the DLHub catalog by uploading the raw model (e.g., PyTorch,
TensorFlow) and model state (e.g., training data, hyperparameters).
DLHub uses this information to dynamically create a container for
the model using repo2docker [24] that contains all model depen-
dencies and necessary model state. Other users may then invoke
the model through DLHub on arbitrary input data. DLHub cur-
rently includes more than one hundred published models, many of
which have requirements for specific ML toolkits and execute more
efficiently on GPUs and accelerators. Figure 1 shows the execution
time when invoking the MNIST digit identification model. Other
DLHub models execute for between seconds and several minutes.

Synchrotron Serial Crystallography (SSX) is an emerging
method for imaging small crystal samples 1-2 orders of magnitude
faster than other methods. To keep pace with the increased data
production, SSX researchers require automated approaches that
can process the resulting data with great rapidity: for example,
to count the bright spots in an image (“stills processing”) within
seconds, both for quality control and as a first step in structure
determination. The DIALS [52] crystallography processing tools
are implemented as Python functions that execute for 1-2 seconds
per sample. Analyzing large datasets requires HPC resources to
derive crystal structures in a timely manner.

Quantitative Neurocartography and connectomics map the
neurological connections in the brain—a compute- and data-intensive
process that requires processing ~20GB every minute during exper-
iments. Researchers apply automated workflows to perform quality
control on raw images (to validate that the instrument and sample
are correctly configured), apply ML models to detect image centers
for subsequent reconstruction, and generate preview images to
guide positioning. Each of these steps is implemented as a function
that can be executed sequentially with some data exchange between
steps. However, given the significant data sizes, researchers typi-
cally rely on HPC resources and are subject to scheduling delays.

Real-time data analysis in High Energy Physics (HEP): The
traditional HEP analysis model uses successive processing steps to

reduce the initial dataset (typically, 100s of PB) to a size that per-
mits real-time analysis. This iterative approach requires significant
computation time and storage of large intermediate datasets, and
may take weeks or months to complete. Low-latency, query-based
analysis strategies [40] are being developed to enable real-time
analysis using native operations on hierarchically nested, columnar
data. Such queries are well-suited to FaaS. To enable interactive
analysis, for example as a physicist engages in real-time analysis of
several billion particle collision events, successive compiled func-
tions, each running for seconds, need to be dispatched to the data.
Analysis needs require sporadic (and primarily remote) invocation,
and compute needs increase as new data are collected.

X-ray Photon Correlation Spectroscopy (XPCS) is an ex-
perimental technique used to study the dynamics in materials at
nanoscale by identifying correlations in time series of area detector
images. This process involves analyzing the pixel-by-pixel correla-
tions for different time intervals. The detector acquires megapixel
frames at 60 Hz (~120 MB/sec). Computing correlations at these
data rates is a challenge that requires HPC resources but also rapid
response time. Image processing functions, such as XPCS-eigen’s
corr function, execute for approximately 50 seconds, and images
can be processed in parallel.

Requirements for Faa$S in science: The case studies illumi-
nate benefits of FaaS approaches (e.g., decomposition, abstraction,
flexibility, scalability, reliability), but also elucidate requirements
unmet by existing FaaS solutions:

o Specialized compute: functions may require HPC-scale
and/or specialized and heterogeneous resources (e.g., GPUs).

e Distribution: functions may need to execute near to data
and/or on a specialized computer.

e Dependencies: functions often require specific libraries and
user-specified dependencies.

o Data: functions analyze both small and large data, stored in
various locations and formats, and accessible via different
methods (e.g., Globus [18]).

e Authentication: institutional identities and specialized se-
curity models are used to access data and compute resources.

o State: functions may be connected and share state (e.g., files
or database connections) to decrease overheads.

e Latency: functions may be used in online (e.g., experiment
steering) and interactive environments (e.g., Jupyter note-
books) that require rapid response.

e Research CI: resources offer batch scheduler interfaces
(with long delays, periodic downtimes, proprietary inter-
faces) and specialized container technology (e.g., Singularity,
Shifter) that make it challenging to provide common execu-
tion interfaces, elasticity, and fault tolerance.

o Billing: research CI use allocation-based usage models.

3 CONCEPTUAL MODEL

We first describe the conceptual model behind funcX to provide
context to the implementation architecture. funcX allows users to
register and then execute functions on arbitrary endpoints. All user
interactions with funcX are performed via a REST APl implemented
by a cloud-hosted funcX service.

Listing 1: Using funcX SDK to register and invoke a function.

def automo_preview(fname, start, end, step):
import numpy, tomopy
from automo.util import read_adaptive, save_png

proj, flat, dark, _ = read_adaptive(
fname, proj=(start, end, step))
proj_norm = tomopy.normalize(proj, flat, dark)

flat = flat.astype('floatl16')
save_png(flat.mean(axis=0), fname='prev.png')
return 'prev.png'

fc = FuncXClient ()
func_id= fc.register_function(automo_preview)
endpoint_id = '863d-...-d82ed'

task_id = fc.run(func_id, endpoint_id,
fname="'test.h5', start=0, end=10, step=1)
res = fc.get_result(task_id)

Functions: funcX is designed to execute functions—snippets of
Python code that perform some activity. A funcX function explicitly
defines a Python function and input signature. The function body
must specify all imported modules. Listing 1 shows the registration
of a function for creating a tomographic preview image from raw
tomographic data contained in an HDF5 input file. The function’s
input specifies the file and parameters to identify and read a pro-
jection. It uses the Automo [21] Python package to read the data,
normalize the projection, and then save the preview image. The
function returns the name of the saved preview image.

Function registration: A function must be registered with the
funcX service before it can be executed. Registration is performed
via a JSON POST request to the REST APL The request includes:
a name and the serialized function body. Users may also specify
users, or groups of users, who may invoke the function. Optionally,
the user may specify a container image to be used. Containers allow
users to construct environments with appropriate dependencies
(system packages and Python libraries) required to execute the
function. funcX assigns a universally unique identifier (UUID) for
management and invocation. Users may update functions they own.

Endpoints: A funcX endpoint is a logical entity that represents
a compute resource. The corresponding funcX agent allows the
funcX service to dispatch functions to that resource for execution.
The agent handles authentication and authorization, provisioning
of nodes on the compute resource, and monitoring and management.
Administrators or users can deploy a funcX agent and register an
endpoint for themselves and/or others, providing descriptive (e.g.,
name, description) metadata. Each endpoint is assigned a unique
identifier for subsequent use.

Function execution: Authorized users may invoke a registered
function on a selected endpoint. To do so, they issue a request via
the funcX service which identifies the function and endpoint to be
used as well as inputs to be passed to the function. Functions are
executed asynchronously: each invocation returns an identifier via
which progress may be monitored and results retrieved. We refer
to an invocation of a function as a “task”

funcX service: Users interact with funcX via a cloud-hosted
service which exposes a REST API for registering functions and
endpoints, and for executing functions, monitoring their execu-
tion, and retrieving results. The service is paired with accessible
endpoints via the endpoint registration process.

User interface: funcX provides a Python SDK that wraps the
REST API Listing 1 shows an example of how the SDK can be
used to register and invoke a function on a specific endpoint. The
example first constructs a client and registers the preview function.
It then invokes the registered function using the run command and
passes the unique function identifier, the endpoint id on which to
execute the function, and inputs (in this case fname, start, end,
and step). Finally, the example shows that the asynchronous results
can be retrieved using get_result.

4 ARCHITECTURE AND IMPLEMENTATION

The funcX system combines a cloud-hosted management service
with software agents deployed on remote resources: see Figure 2.

Yo
—

REST Services g
Container Registry Function Cache Monitoring

Redis

Function Registry

Forwarder R ¢, Forwarder
Monitoring Watchdog
Facilty 1 40 Facility N @
Endpoint 1 "
Batching Container Mgmt. Endpoint 1
Load-Balancing Auto-Scaling
Manager 1 Manager N Manager 1

Container Mgmt. Container Mgmt. Container Mgmt.

Figure 2: funcX architecture showing the funcX service (top)
consisting of a REST interface, Redis store, and Forwarders.
funcX endpoints (bottom) provision resources and coordi-
nate the execution of functions.

4.1 The funcX Service

The funcX service maintains a registry of funcX endpoints, func-
tions, and users in a persistent AWS Relational Database Service
(RDS) database. To facilitate rapid function dispatch, funcX stores
serialized function codes and tasks (including inputs and task meta-
data) in an AWS ElastiCache Redis hashset. The service also man-
ages a Redis queue for each endpoint that stores task ids for tasks
to be dispatched to that endpoint. The service provides a REST API
to register and manage endpoints, register functions, execute and
monitor functions, and retrieve the output from tasks. The funcX
service is secured using Globus Auth [48] which allows users, pro-
grams and applications, and funcX endpoints to securely make API
calls. When an endpoint registers with the funcX service a unique
forwarder process is created for each endpoint. Endpoints establish

ZeroMQ connections with their forwarder to receive tasks, return
results, and perform heartbeats.

funcX implements a hierarchical task queuing architecture con-
sisting of queues at the funcX service, endpoint, and worker. These
queues support reliable fire-and-forget function execution that is
resilient to failure and intermittent endpoint connectivity. At the
first level, each registered endpoint is allocated a unique Redis task
queue and result queue that reliably stores and tracks tasks.

Figure 3 shows the funcX task lifecycle. At function submission
the funcX service routes the task to the specified endpoint’s task
queue. The forwarder dispatches tasks to the agent only when an
agent is connected. The forwarder uses heartbeats to detect if an
agent is disconnected and then returns outstanding tasks back into
the task queue. When the agent reconnects the tasks are forward
to that agent. This architecture ensures that funcX agents receive
tasks with at least once semantics. funcX agents internally queue
tasks at both the manager and worker. These queues ensure that
tasks are not lost once they have been delivered to the endpoint.
Similarly, results are returned to the funcX service and stored in
the endpoint’s result queue until they are retrieved by the user.

o

REST Service 1

/status ---* /submit

i @) © .
Redis Hashset * ——————————————— s ((gfgli

ResutQueue 0000000 Forwarder Taskaueuve J000000000

/r*eg?ster‘

Results zmgq channels Task Dispatch

Endpoint

Figure 3: funcX task execution path. A task transmitted to
funcX (1) is stored in Redis (2), queued for execution (3), and
dispatched via a Forwarder to an endpoint (4); results are
returned (5) then stored in Redis for users to retrieve (6).

funcX relies on AWS hosted databases, caches, and Web serving
infrastructure to reduce operational overhead, elastically scale re-
sources, and provide high availability. While these services provide
significant benefits to funcX, they have associated costs. To mini-
mize these costs we apply several techniques, such as using small
cloud instances with responsive scaling to minimize the steady state
cost and restricting the size of input and output data passed through
the funcX service to reduce storage costs (e.g., in Redis store). For
larger data sizes we use out-of-band transfer mechanisms such as
Globus [18]. Further, we periodically purge results from the Redis
store once they have been retrieved by the client.

4.2 Function Containers

funcX uses containers to package function code and dependen-
cies that are to be deployed on a compute resource. Our review
of container technologies, including Docker [36], LXC [10], Singu-
larity [34], Shifter [31], and CharlieCloud [41], leads us to adopt
Docker, Singularity, and Shifter in the first instance. Docker works

well for local and cloud deployments, whereas Singularity and
Shifter are designed for use in HPC environments and are sup-
ported at large-scale computing facilities (e.g., Singularity at ALCF
and Shifter at NERSC). Singularity and Shifter implement similar
models and thus it is easy to convert from a common representation
(e.g., a Dockerfile) to both formats.

funcX requires that each container includes a base set of soft-
ware, including Python 3 and funcX worker software. Other system
libraries or Python modules needed for function execution must
also be included. When registering a function, users may option-
ally specify a container to be used for execution; if no container
is specified, funcX executes functions using the worker’s Python
environment. In future work, we intend to make this process dy-
namic, using repo2docker [24] to build Docker images and convert
them to site-specific container formats as needed.

4.3 The funcX Endpoint

The funcX endpoint represents a remote resource and delivers high-
performance remote execution of functions in a secure, scalable,
and reliable manner.

The endpoint architecture, depicted in the lower portion of Fig-
ure 2, is comprised of three components, which are discussed below:

e funcX agent: persistent process that queues and forwards
tasks and results, interacts with resource schedulers, and
batches and load balances requests.

e Manager: manages the resources for a single node by deploy-
ing and managing a set of workers.

o Worker: executes tasks within a container.

The funcX agent is a software agent that is deployed by a user on
a compute resource (e.g., an HPC login node, cloud instance, or a
laptop). It registers with the funcX service and acts as a conduit
for routing tasks and results between the service and workers. The
funcX agent manages resources on its system by working with
the local scheduler or cloud API to deploy managers on compute
nodes. The funcX agent uses a pilot job model [49] to provision and
communicate with resources in a uniform manner, irrespective of
the resource type (cloud or cluster) or local resource manager (e.g.,
Slurm, PBS, Cobalt). As each manager is launched on a compute
node, it connects to and registers with the funcX agent. The funcX
agent then uses ZeroMQ sockets to communicate with its man-
agers. To minimize blocking, all communication is performed by
threads using asynchronous communication patterns. The funcX
agent uses a randomized scheduling algorithm to allocate tasks to
suitable managers with available capacity. The funcX agent can
be configured to provide access to specialized hardware or accel-
erators. When deploying the agent users can specify how worker
containers should be launched, enabling them to mount specialized
hardware and execute functions on that hardware. In future work
we will extend the agent configuration to specify custom hardware
and software capabilities and report this information to the funcX
agent and service for scheduling.

To provide fault tolerance and robustness, for example with
respect to node failures, the funcX agent relies on periodic heartbeat
messages and a watchdog process to detect lost managers. The
funcX agent tracks tasks that have been distributed to managers
so that when failures do occur, lost tasks can be re-executed (if

permitted). funcX agents communicate with the funcX service’s
forwarder via a ZeroMQ channel. Loss of a funcX agent is detected
by the forwarder and when the funcX agent recovers, it repeats
the registration process to acquire a new forwarder and continue
receiving tasks. To reduce overheads, the funcX agent can shut
down managers to release resources when they are not needed;
suspend managers to prevent further tasks being scheduled to them;
and monitor resource capacity to aid scaling decisions.

Managers represent, and communicate on behalf of, the collec-
tive capacity of the workers on a single node, thereby limiting the
number of sockets used to just two per node. Managers determine
the available CPU and memory resources on a node, and partition
the node among the workers. Once all workers connect to the man-
ager it registers with the endpoint. Managers advertise deployed
container types and available capacity to the endpoint.

Workers persist within containers and each executes one task at
a time. Since workers have a single responsibility, they use blocking
communication to wait for functions from the manager. Once a task
is received it is deserialized, executed, and the serialized results are
returned via the manager.

4.4 Managing Compute Infrastructure

funcX is designed to support a range of computational resources,
from embedded computers to clusters, clouds, and supercomputers,
each with distinct access modes. As funcX workloads are often spo-
radic, resources must be provisioned as needed to reduce costs due
to idle resources. funcX uses Parsl’s provider interface [15] to inter-
act with various resources, specify resource-specific requirements
(e.g., allocations, queues, limits, cloud instance types), and define
rules for automatic scaling (i.e., limits and scaling aggressiveness).
This interface allows funcX to be deployed on batch schedulers
such as Slurm, Torque, Cobalt, SGE, and Condor; the major cloud
vendors such as AWS, Azure, and Google Cloud; and Kubernetes.

4.5 Container Management

funcX agents are able to execute functions on workers deployed
in specific containers. Thus, managers must dynamically deploy,
manage, and scale containers based on function requirements. Each
manager advertises its deployed container types to the funcX agent.
The funcX agent implements a greedy, randomized scheduling
algorithm to route tasks to managers and an on-demand container
deployment algorithm on the manager. When routing functions to a
manager, the agent attempts to send tasks to managers with suitable
deployed containers. If there is availability on several managers,
the agent allocates pending tasks in a randomized manner. Upon
receiving the task, the manager either deploys a new worker in a
suitable container or sends the task to an existing worker deployed
in a suitable container. Both the function routing and container
deployment components are implemented with modular interfaces
via which users can integrate their own algorithms.

When an endpoint is deployed on Kubernetes, both the manager
and the worker are deployed within a pod and thus the manager
cannot change worker containers. In this case, a set of managers
are deployed with specific container images and the agent simply
routes tasks to suitable managers.

4.6 Serialization and Data Management

funcX supports registration of arbitrary Python functions and the
passing of data (e.g., primitive types and complex objects) to/from
functions. funcX uses a Facade interface that leverages several seri-
alization libraries, including cpickle, dill, tblib, and JSON. The funcX
serializer sorts the serialization libraries by speed and applies them
in order successively until the object is serialized. This approach
exploits the strengths of various libraries, including support for
complex objects (e.g., machine learning models) and traceback ob-
jects in a fast and transparent fashion. Once objects are serialized,
they are packed into buffers with headers that include routing tags
and the serialization method, such that only the buffers need be
unpacked and deserialized at the destination.

While the serializer can act on arbitrary Python objects and
input/output data, for performance and cost reasons we limit the
size of data that can be passed through the funcX service. Instead,
we rely on out-of-band data transfer mechanisms, such as Globus,
when passing large datasets to/from funcX functions. Data can be
staged prior to the invocation of a function (or after the completion
of a function) and a reference to the data’s location can be passed
to/from the function as input/output arguments. Many early users
use this method to move large files to/from functions (see §6).

4.7 Optimizations

We apply several optimizations to enable high-performance func-
tion serving in a wide range of research environments. We briefly
describe four optimization methods employed in funcX.

Container warming is used by FaaS platforms to improve per-
formance [51]. Function containers are kept warm by leaving them
running for a short period of time (5-10 minutes) following the exe-
cution of a function. Warm containers remove the need to instanti-
ate a new container to execute a function, significantly reducing
latency. This need is especially evident in HPC environments for
several reasons: first, loading many concurrent Python environ-
ments and containers puts a strain on large, shared file systems;
second, many HPC centers have their own methods for instan-
tiating containers that may place limitations on the number of
concurrent requests; and third, individual cores are often slower in
many core architectures like Xeon Phis. As a result the start time
for containers can be much larger than what would be seen locally.

Batching requests enables funcX to amortize costs across many
function requests. funcX implements two batching models: internal
batching to enable managers to request many tasks on behalf of
their workers, minimizing network communication costs; and, a
programmatic map command that enables user-driven batching of
function inputs, allowing users to tradeoff efficient execution and
increased per-function latency by creating fewer, larger requests.
The map command can be expressed via the SDK as:

f = fmap(func_id, iterator, ep_id, batch_size, batch_count),
where iterator can support any Python object that implements
Python’s iterator interface, batch_size is the number of tasks
included in each batch, and batch_count is the total number of
batches. (Note: batch_count takes precedence over batch_size).
The map function partitions the computation’s iterator into memory-
efficient batches of tasks. It exploits two key features of Python
iterators: 1) iterators are evaluated in a lazy fashion and use minimal

memory before being called; and 2) islice operators can partition
iterators without evaluating them. Both batching techniques can
increase overall throughput.

Advertising with opportunistic prefetching is a technique
in which managers continuously advertise the anticipated capac-
ity in the near future. funcX managers asynchronously advertise
and receive tasks, thus interleaving network communication with
computation. This can improve performance for high-throughput,
short-duration, workloads.

Memoization involves returning a cached result when the input
document and function body have been processed previously. funcX
supports memoization by hashing the function body and input
document and storing a mapping from hash to computed results.
Memoization is only used if explicitly set by the user.

4.8 Security Model

We implement a comprehensive security model to ensure that func-
tions are executed by authenticated and authorized users and that
one function cannot interfere with another. We rely on two security-
focused technologies: Globus Auth [48] and containers.

funcX uses Globus Auth for authentication, authorization, and
protection of all APIs. The funcX service is registered as a resource
server, allowing users to authenticate using a supported Globus
Auth identity (e.g., institution, Google, ORCID) and enabling vari-
ous OAuth-based authentication flows (e.g., native client) for dif-
ferent scenarios. funcX has associated Globus Auth scopes (e.g.,
“urn:globus:auth:scope:funcx:register_function”) via which other
clients (e.g., applications and services) may obtain authorizations
for programmatic access. funcX endpoints are themselves Globus
Auth native clients, each dependent on the funcX scopes, which are
used to securely connect to the funcX service. Endpoints require
the administrator to authenticate prior to registration in order to
acquire access tokens used for constructing API requests. The con-
nection between the funcX service and endpoints is established
using ZeroMQ. Communication addresses are communicated as
part of the registration process. Inbound traffic from endpoints to
the cloud-hosted service is limited to known IP addresses.

funcX function execution can be isolated in containers to ensure
they cannot access data or devices outside their context. To en-
able fine grained tracking of execution, we store execution request
histories in the funcX service and in logs on funcX endpoints.

5 EVALUATION

We evaluate the performance of funcX in terms of latency, scalabil-
ity, throughput, and fault tolerance. We also explore the effects of
batching, memoization, and prefetching.

5.1 Latency

We first compare funcX with commercial FaaS platforms by mea-
suring the time required for single function invocations. We have
created and deployed the same Python function on Amazon Lambda,
Google Cloud Functions, Microsoft Azure Functions, and funcX. To
minimize unnecessary overhead we use the same payload when
invoking each function: the string “hello-world” Each function
simply returns the string.

Table 1: FaaS latency breakdown (in ms).

Overhead Function Total Std. Dev.

warm 118.0 12.0 130.0 14.4
Azure

cold 1,327.7 32.0 1,359.7 1,233.1
Google warm 80.6 5.0 85.6 12.3

cold 203.8 19.0 222.8 141.8
Amazon warm 100.0 0.3 100.3 6.9

cold 468.2 0.6 468.8 70.8
FuneX warm 109.1 2.2 111.3 11.2

cold 1,491.1 6.1 1,497.2 10.2

Although each provider operates its own data centers, we at-
tempt to standardize network latencies by placing functions in an
available US East region (between South Carolina and Virginia).
We deploy the funcX service and endpoint on separate AWS EC2
instances in the US East region. We then measure latency as the
round-trip time to submit, execute, and return a result from the
function. We submit all requests from the login node of Argonne
National Laboratory’s (ANL) Cooley cluster, in Lemont, IL (18.2 ms
latency to the funcX service).

We compare the cold and warm start times for each FaaS service.
The cold start time aims to capture the scenario where a function
is first executed and the function code and execution environment
must be configured. To ensure cold start for funcX functions, we
restart the endpoint and measure the time taken to launch the
first function. For the other services, we invoke functions every 15
minutes (providers report maximum cache times of 10 minutes, 5
minutes, and 5 minutes, for Google, Amazon, and Azure, respec-
tively) in order to ensure that each function starts cold. We execute
the cold start functions 50 times, and the warmed functions 10 000
times. Table 1 shows the total time for warm and cold functions as
well as the computed overhead and function execution time. For
the closed-source, commercial FaaS systems we obtain function
execution time from execution logs and compute overhead as any
additional time spent invoking the function.

Amazon Lambda, Google Functions, and Azure Functions exhibit
warmed round trip times of 100ms, 86ms, and 130ms, respectively.
funcX offers comparable performance, with 111ms round trip time.

Amazon Lambda, Google Functions, Azure Functions, and funcX
exhibit cold round trip times of 469ms, 223ms, 1360ms, and 1497ms,
respectively. In the case of funcX, the overhead is primarily due to
the startup time of the container (see Table 2). Google and Ama-
zon exhibit significantly better cold start performance than funcX,
perhaps as a result of the simplicity of our function (which re-
quires only standard Python libraries and therefore could be served
on a standard container) or perhaps due to the low overhead of
proprietary container technologies [51].

We further explore latency for funcX by instrumenting the sys-
tem. The results in Figure 4 for a warm container report times as
follows: ts: Web service latency to authenticate, store the task in
Redis, and append the task to an endpoint’s queue; t: forwarder la-
tency to read task from Redis store, forward the task to an endpoint,
and write the result to the Redis store; .: endpoint latency to re-
ceive tasks and send results to the Forwarder, and to send tasks and
receive results from the worker; and t,,: function execution time.
We observe that t,, is fast relative to the overall system latency. The

network latency between s and ¢ only includes minimal commu-
nication time due to internal AWS networks (measured at <1ms).
Most funcX overhead is captured in t; as a result of authentication,
and in t, due to internal queuing and dispatching.

t,=72ms t=2ms t,=15ms t,=2ms

> < > < > < >
<1ms 18 ms <1ms
Service —_— Forwarder -+ Endpoint -+ Worker

Figure 4: funcX latency breakdown for a warm container.

5.2 Scalability and Throughput

We study the strong and weak scaling of the funcX agent on ANL’s
Theta and NERSC’s Cori supercomputers. Theta is a 11.69-petaflop
system based on the second-generation Intel Xeon Phi “Knights
Landing" (KNL) processor. Its 4392 nodes each have a 64-core pro-
cessor with 16 GB MCDRAM, 192 GB of DDR4 RAM, and are inter-
connected with high speed InfiniBand. Cori is a 30-petaflop system
with an Intel Xeon “Haswell" partition and an Intel Xeon Phi KNL
partition. We ran our tests on the KNL partition, which has 9688
nodes, each with a 68-core processor (with 272 hardware threads)
with six 16GB DIMMs, 96 GB DDR4 RAM, and interconnected with
Dragonfly topology. We perform experiments using 64 Singularity
containers on each Theta node and 256 Shifter containers on each
Cori node. Due to a limited allocation on Cori we use the four
hardware threads per core to deploy more containers than cores.

— 10%

K E

()

E

5104

c E

© b no-op (Theta)
ko]] no-op (Cori)
210y 1s sleep (Theta)
g E 1s sleep ideal
O 1min stress (Theta)

1min stress ideal

100 102 A6 A6f 108
Number of containers

(a) strong scaling

10

=
o

10%4

10%

Completion time (s)

100 T T T T T T T T T T T T T T T T T T T
10! 102 103 104 10° 106
Number of containers
(b) weak scaling

Figure 5: Strong and weak scaling of the funcX agent.

Strong scaling evaluates performance when the total number of
function invocations is fixed; weak scaling evaluates performance
when the average number of functions executed on each container
is fixed. To measure scalability we created functions of various

durations: a 0-second “no-op” function that exits immediately, a 1-
second “sleep” function, and a 1-minute CPU “stress” function that
keeps a CPU core at 100% utilization. For each case, we measured
completion time of a batch of functions as we increased the total
number of containers. Notice that the completion time of running M
“no-op” functions on N workers indicates the overhead of funcX to
distribute the M functions to N containers. Due to limited allocation
we did not execute sleep or stress functions on Cori, nor did we
execute stress functions for strong scaling on Theta.

5.2.1 Strong scaling. Figure 5(a) shows the completion time of
100 000 concurrent function requests with an increasing number of
containers. On both Theta and Cori the completion time decreases
as the number of containers increases, until we reach 256 containers
for “no-op” and 2048 containers for “sleep” on Theta. As reported
by Wang et al. [51] and Microsoft [11], Amazon Lambda achieves
good scalability for a single function to more than 200 containers,
Microsoft Azure Functions can scale up to 200 containers, and
Google Cloud Functions does not scale well beyond 100 containers.
While these results may not indicate the maximum number of
containers that can be used for a single function, and likely include
per-user limits imposed by the platform, our results show that
funcX scales similarly to commercial platforms.

5.2.2 Weak scaling. To conduct the weak scaling tests we per-
formed concurrent function requests such that each container re-
ceives, on average, 10 requests. Figure 5(b) shows weak scaling for
“no-op,” “sleep,” and “stress.” For “no-op,' the completion time in-
creases with more containers on both Theta and Cori. This reflects
the time required to distribute requests to all of the containers. On
Cori, funcX scales to 131 072 concurrent containers and executes
more than 1.3 million “no-op” functions. Again, we see that the
completion time for “sleep” remains close to constant up to 2048
containers, and the completion time for “stress” remains close to
constant up to 16 384 containers. Thus, we expect a function with
several minute duration would scale well to many more containers.

5.2.3 Throughput. We observe a maximum throughput for a funcX
agent (computed as number of function requests divided by com-
pletion time) of 1694 and 1466 requests per second on Theta and
Cori, respectively.

5.24 Summary. Our results show that funcX agents i) scale to
130 000+ containers for a single function; ii) exhibit good scaling
performance up to approximately 2048 containers for a 1-second
function and 16 384 containers for a 1-minute function; and iii)
provide similar scalability and throughput using both Singularity
and Shifter containers on Theta and Cori. It is important to note that
these experiments study the funcX agent, and not the end-to-end
throughput of funcX. While the funcX Web service can elastically
scale to meet demand, the communication overhead may limit
throughput. To address this challenge and amortize communication
overheads we enable batch submission of tasks. These optimizations
are discussed in §5.5

5.3 Elasticity

funcX endpoints dynamically scale and provision compute resources
in response to function load. To demonstrate this feature, we de-
ployed a funcX endpoint on a Kubernetes cluster, and used funcX to
scale the number of active pods. We deployed three sleep functions
(running for 1s, 10s, and 20s), each in its own container. We limit
each function to use between 0 to 10 pods. Every 120 seconds, we
submitted one 1s, five 10s, and twenty 20s functions to the end-
point. Figure 6 illustrates the concurrent functions submitted to the
endpoint (solid lines) and the number of active pods as time elapsed
(dashed lines). We see that upon task arrivals at time 0, 120, and
240, the number of active pods is increased to accommodate the
load. For example, at time 0, funcX provisioned one, five, and ten
(ten is the maximum) pods to process one 1s, five 10s, and twenty
20s functions, respectively. When the functions completed, funcX
terminated unused pods.

1s
10s
20s

104

Pending functions

1s
207 10s
20s

Number of pods

0 50 100 150 250 300 350 400

200
Elapsed time (s)

Figure 6: Number of concurrent functions and pods over
time. Top: number of pending and executing functions. Bot-
tom: number of active pods serving functions.

5.4 Fault Tolerance

funcX uses heartbeat messages to detect and respond to compo-
nent failures. We evaluate this feature by forcing endpoint and
manager failures while processing a workload of 100ms sleep func-
tions launched at a uniform rate.

The first experiment uses two managers processing a stream
of tasks launched at uniform intervals, ensuring that the system
is kept at capacity. One manager is terminated after 2 seconds
and restarted after 4 seconds. Figure 7 illustrates the task latencies
measured as the experiment progresses. It shows that task latency
increases immediately following the failure, as tasks are queued,
and then quickly reduce after the manager recovers.

To explore the impact of an endpoint failing (or going offline),
we launch a stream of tasks at a uniform rate, and trigger the failure
and recovery of the endpoint after 43s and 85s, respectively. Figure 8
illustrates the task latencies measured as the experiment progresses.
We see that task latency increases immediately following the failure
and returns to previous levels after recovery.

N
wv
L

---- Manager lost
---- Manager recovered

=N
0 o
A :

=
=}
!

Task latency (s)

o
(o]
f

o
o
p

0 2 4 6 8 10
Elapsed time (s)

Figure 7: Timeline showing task processing latency for
100ms functions, when a manager fails and recovers.

40 E i ---- Endpoint lost

0} i ! ---- Endpoint recovered
> [1
0 301 ! :
< 1 1
8] I
I 1
T 201 1 1
% i i
© [1
= 101 | :
I | i

0 " : |:||III||I|||||||||||||
0 50 100 150 200

Elapsed time (s)

Figure 8: Timeline showing task processing latency for
100ms functions, when an endpoint fails and recovers.

5.5 Optimizations

In this section we evaluate the effect of our optimization mecha-
nisms. In particular, we investigate how container initialization,
batching, prefetching, and memoization impact performance.

5.5.1 Container instantiation. To understand the time to instanti-
ate various container technologies on different execution resources
we measure the time it takes to start a container and execute a
Python command that imports funcX’s worker modules—the base-
line steps that would be taken by every cold funcX function. We
deploy the containers on an AWS EC2 m5. large instance and on
compute nodes on Theta and Cori following best practices laid out
in facility documentation. Table 2 shows the results. We speculate
that the significant performance deterioration of container instanti-
ation on HPC systems can be attributed to a combination of slower
clock speed on KNL nodes and shared file system contention when
fetching images. These results highlight the need to apply function
warming approaches to reduce overheads.

Table 2: Cold container instantiation time for different con-
tainer technologies on different resources.

System Container Min(s) Max(s) Mean (s)

Theta Singularity 9.83 14.06 10.40
Cori Shifter 7.25 31.26 8.49
EC2 Docker 1.74 1.88 1.79
EC2 Singularity 1.19 1.26 1.22

5.5.2 Executor-side batching. To evaluate the effect of executor-
side batching we submit 10000 concurrent “no-op” function re-
quests and measure the completion time when executors can re-
quest one function at a time (batching disabled) vs when they can

request many functions at a time based on the number of idle con-
tainers (batching enabled). We use 4 nodes (64 containers each) on
Theta. We observe that the completion time with batching enabled
is 6.7s (compared to 118s when disabled).

5.5.3 User-driven batching. Figure 9 shows the strong-scaling per-
formance of funcX’s map command as we vary batch size and
number of workers. In this experiment we launch 10 million func-
tions each executing for 10us, with the client and endpoint both
running on one AWS EC2 c5n.9xlarge instance. We see that funcX
can achieve a peak throughput of 1.2 million functions-per-second
on a single machine, well beyond what is possible without batching.

1.257 1 worker

—_ 2 workers

g 1.004 4 workers
5 < 8 workers
a8 16 workers
5,8 0.75q 32 workers
33
(e} Y-
£ 5 0.501

E

~ 0.25

1 2 4 8 16 32

Number of batches

Figure 9: Strong scaling performance over 10M functions

5.5.4 Batching case studies. To evaluate the effect of user-driven
batching we explore a subset of the scientific case studies discussed
in §2. These case studies represent various scientific functions,
ranging in execution time from half a second through to almost
one minute, and provide perspective to the real-world effects of
batching on different types of functions. The batch size is defined as
the number of requests transmitted to the container for execution.
Figure 10 shows the average latency per request (total completion
time of the batch divided by the batch size), as the batch size in-
creases. We observe that batching provides enormous benefit for
the shortest running functions and reduces the average latency
dramatically when combining tens or hundreds of requests. How-
ever, larger batches provide little benefit, indicating that it would
be better to distribute the requests to additional workers. Similarly,
long-running functions do not benefit, as the communication and
startup costs are small relative to computation time.

a

=

%)

S 1o

z 103

4 E

s]

5]

a 10%

a E

S 1 DIALS

© 10_1‘5 Metadata

g] MNIST

I 10_2_' Neurocartography

o XPCS

z e R as e
16° 161 162 103

Batch size

Figure 10: Effect of batch size (1-1024) on the use cases.

5.5.5 Prefetching. We evaluate the effect of prefetching by creating
ano-op and 1ms, 10ms, and 100ms sleep functions, and measuring
the time for 10 000 concurrent function requests as the prefetch
count per node is increased. Figure 11 shows the results of each
function with 4 nodes (64 containers each) on Theta. We observe
that completion time decreases dramatically as prefetch count in-
creases. This benefit starts diminishing when prefetch count is
greater than 64, suggesting that a good setting of prefetch count
would be close to the number of containers per node.

103
=] no-op (Theta)
P 1ms sleep (Theta)
.g 1 10ms sleep (Theta)
S 102—E 100ms sleep (Theta)
S]
)]
E 4
E 4
(o]
O 104

0 50 100 150 200 250 300

Prefetch count per node

Figure 11: Effect of prefetching.

5.5.6 Memoization. To measure the effect of memoization, we cre-
ate a function that sleeps for one second and returns the input
multiplied by two. We submit 100 000 concurrent function requests
to funcX. Table 3 shows the completion time of the 100 000 requests
when the percentage of repeated requests is increased. We see that
as the percentage of repeated requests increases, the completion
time decreases dramatically. This highlights the significant per-
formance benefits of memoization for workloads with repeated
deterministic function invocations.

Table 3: Completion time vs. number of repeated requests.

100
63.2

Repeated requests (%) 0 25 50 75
403.8 3185 233.6 1479

Completion time (s)

6 EXPERIENCES WITH fUNCX

We conclude by describing our experiences applying funcX to the
six scientific case studies presented in §2.

Metadata extraction: Xtract uses funcX to execute its pre-
registered metadata extraction functions centrally (by transferring
data to the service) and on remote funcX endpoints where data
reside without moving them to the cloud.

Machine learning inference: DLHub uses funcX to perform
model inference on arbitrary compute resources. Each model is
registered as a funcX function, mapped to the DLHub registered
containers. funcX provides several advantages to DLHub, most no-
tably, that it allows DLHub to use various remote compute resources
via a simple interface, and includes performance optimizations (e.g.,
batching and caching) that improve overall inference performance.

Synchrotron Serial Crystallography (SSX): We deployed the
DIALS [52] crystallography processing tools as funcX functions.
funcX allows SSX researchers to submit the same stills process
function to either a local endpoint to perform data validation or HPC
resources to process entire datasets and derive crystal structures.

Quantitative Neurocartography: Previous practice depended
on batch computing jobs that required frequent manual interven-
tion for authentication, configuration, and failure resolution. With
funcX, researchers can use a range of computing resources without
the overheads previously associated with manual management. In
addition, they can now integrate computing into their automated
visualization and analysis workflows via programmatic APIs.

X-ray Photon Correlation Spectroscopy (XPCS): We incor-
porated the XPCS-eigen corr function, deployed as a funcX function,
into an on-demand analysis pipeline triggered as data are collected
at the beamline. This work allows scientists to offload analysis tasks
to HPC resources, simplify large-scale parallel processing for large
data rates. funcX’s scalability meets the demands of the XPCS data
rates by acquiring multiple nodes to serve functions.

Real-time data analysis in High Energy Physics (HEP): We
developed a funcX backend to Coffea [20], an analysis framework
that can be used to parallelize real-world HEP analyses operating
on columnar data to aggregate histograms of analysis products of
interest in real time. Subtasks representing partial histograms are
dispatched as funcX requests. We completed a typical HEP analysis
of 300 million events in nine minutes (1.9 ps/event), simultaneously
using two funcX endpoints provisioning heterogeneous resources.

Summary: Based on discussion with these researchers we have
identified several benefits of the funcX approach in these scenar-
ios. 1) funcX abstracts the complexity of using diverse compute
resources. Researchers are able to incorporate scalable analyses
without having to know anything about the computing environ-
ment (batch queues, container technology, etc.). 2) Researchers
appreciated the ability to simplify application code, automatically
scale resources to workload needs, and avoid the complexity of
mapping applications to batch jobs. Several highlighted the benefits
for elastically scaling resources to long-tail task durations. 3) Re-
searchers found that the flexible web-based authentication model
significantly simplified remote computing when compared to the
previous models that relied on SSH keys and two-factor authen-
tication. 4) Several case studies use funcX to enable event-based
processing. We found that the funcX model lends itself well to such
use cases, as it allows for the execution of sporadic workloads. The
neurocartography, XPCS, and SSX use cases all exhibit such char-
acteristics, requiring compute resources only when experiments
are running. 5) Researchers highlighted portability as a benefit of
funcX, not only for using multiple resources but also to overcome
scheduled and unscheduled facility downtime. 6) funcX allowed
resources to be used efficiently and opportunistically, for example
using backfill queues to quickly execute tasks. 7) funcX allowed
users to securely share their functions, enabling collaborators to
easily (without needing to setup environments) apply functions on
their own datasets. This was particularly useful in the XPCS use
case as researchers share access to the same instrument.

While initial feedback has been encouraging, our experiences
also highlight important challenges that need to be addressed. 1)
FaasS is not suitable for some applications, for example applications
with tightly integrated computations, that share large amounts of
data, and are implemented with large and complex code bases. 2)
Containerization does not always provide entirely portable codes
that can be run on arbitrary resources, due to the need to compile
and link resource-specific modules. For example, in the XPCS use

case we needed to compile codes specifically for a target resource.
3) The coarse allocation models employed by research infrastruc-
ture does not map well to fine grain and short duration function
usage, work is needed to support accounting and billing models
to track usage on a per-user and per-function basis. 4) There are
other barriers that make it difficult to decompose applications into
functions. For example, the neurocartography tools are designed
to perform many interlaced tasks and thus we chose to package
the entire toolkit as a function rather than to decompose these
tools into many functions. We also found that it can be difficult to
modify applications for stateless execution, as state is not easily
shared between functions, and poorly designed solutions may lead
to significant communication overhead.

7 RELATED WORK

FaaS platforms have proved extremely successful in industry as a
way to reduce costs and remove the need to manage infrastructure.
Hosted FaaS platforms: Amazon Lambda [1], Google Cloud
Functions [7], and Azure Functions [4] are the most well-known
FaaS platforms. Each service supports various function languages
and trigger sources, connects directly to other cloud services, and
is billed in granular increments. Lambda uses Firecracker, a cus-
tom virtualization technology built on KVM, to create lightweight
micro-virtual machines. To meet the needs of IoT use cases, some
cloud-hosted platforms also support local deployment (e.g., AWS
Greengrass [3]); however, they support only single machines and
require that functions be exported from the cloud platform.

Open source platforms: Open Faa$ platforms resolve two of
the key challenges to using FaaS for scientific workloads: they can
be deployed on-premise and can be customized to meet the require-
ments of data-intensive workloads without set pricing models.

Apache OpenWhisk [2], the basis of IBM Cloud Functions [8],
defines an event-based programming model, consisting of Actions
which are stateless, runnable functions, Triggers which are the types
of events OpenWhisk may track, and Rules which associate one
trigger with one action. OpenWhisk can be deployed locally as a
service using a Kubernetes cluster.

Fn [6] is an event-driven FaaS system that executes functions
in Docker containers. Fn allows users to logically group functions
into applications. Fn can be deployed locally (on Windows, MacOS,
or Linux) or on Kubernetes.

The Kubeless [9] FaaS platform builds upon Kubernetes. It uses
Apache Kafka for messaging, provides a CLI that mirrors Amazon
Lambda, and supports comprehensive monitoring. Like Fn, Kubeless
allows users to define function groups that share resources.

SAND [14] is a lightweight, low-latency FaaS platform from
Nokia Labs that provides application-level sandboxing and a hierar-
chical message bus. SAND provides support for function chaining
via user-submitted workflows. SAND is closed source and as far as
we know cannot be downloaded and installed locally.

Abaco [46] implements the Actor model, where an actor is an
Abaco runtime mapped to a specific Docker image. Each actor
executes in response to messages posted to its inbox. It supports
functions written in several programming languages and automatic
scaling. Abaco also provides fine-grained monitoring of container,

state, and execution events and statistics. Abaco is deployable via
Docker Compose.

Comparison with funcX: Hosted cloud providers implement
high performance and reliable FaaS models that are used by an
enormous number of users. However, they are not designed to
support heterogeneous resources or research CI (e.g., schedulers,
containers), do not integrate with the science ecosystem (e.g., in
terms of data and authentication models), and can be costly.

Open source and academic frameworks support on-premise de-
ployments and can be configured to address a range of use cases.
However, each system we surveyed is Docker-based and relies on
Kubernetes (or other container orchestration platforms) for deploy-
ment. These systems therefore cannot be easily adapted to existing
HPC environments. We are not aware of any systems that sup-
port remote execution of functions over a distributed or federated
ecosystem of endpoints.

Other Related Approaches FaaS has many predecessors, no-
tably grid and cloud computing, container orchestration, and anal-
ysis systems. Grid computing [26] laid the foundation for remote,
federated computations, most often through federated batch sub-
mission [33]. GridRPC [43] defines an API for executing functions
on remote servers requiring that developers implement the client
and the server code. funcX extends these ideas to allow interpreted
functions to be registered and subsequently dynamically executed
within sandboxed containers via a standard endpoint APL

Container orchestration systems [29, 30, 42] allow users to scale
deployment of containers while managing scheduling, fault tol-
erance, resource provisioning, and addressing other user require-
ments. These systems primarily rely on dedicated, cloud-like in-
frastructure and cannot be directly used with most HPC resources.
However, these systems provide a basis for other serverless plat-
forms, such as Kubeless. funcX focuses at the level of scheduling
and managing functions, that are deployed across a pool of con-
tainers. We apply approaches from container orchestration systems
(e.g., warming) to improve performance.

Data-parallel systems such as Hadoop [12] and Spark [13] enable
map-reduce style analyses. Unlike funcX, these systems dictate
a particular programming model on dedicated clusters. Python
parallel computing libraries such as Parsl and Dask [5] support
development of parallel programs, and parallel execution of selected
functions within those scripts, on clusters and clouds. These systems
could be extended to use funcX for remote execution of tasks.

8 CONCLUSION

funcX is a distributed Faa$ platform that is designed to support
the unique needs of scientific computing. It combines a reliable
and easy-to-use cloud-hosted interface with the ability to securely
execute functions on distributed endpoints deployed on various
computing resources. funcX supports many HPC systems and cloud
platforms, can use three container technologies, and can expose
access to heterogeneous and specialized computing resources. We
demonstrated that funcX provides comparable latency to that of
cloud-hosted Faa$S platforms and showed that funcX agents can
scale to execute 1M tasks over 130 000 concurrent workers when
deployed on the Cori supercomputer. We also showed that funcX
can elastically scale in response to load, automatically respond to

failures, and that user-driven batching can execute more than one
million functions per second on a single machine.

funcX demonstrates the advantages of adapting the FaaS model
to create a federated computing ecosystem. Based on early experi-
ences using funcX in six scientific case studies, we have found that
the approach provides several advantages, including abstraction,
code simplification, portability, scalability, and sharing; however,
we also identified several limitations including suitability for some
applications, conflict with current allocation models, and challenges
decomposing applications into functions. We hope that funcX will
serve as a flexible platform for scientific computing while also
enabling new research related to function scheduling, dynamic
container management, and data management.

In future work we will extend funcX’s container management
capabilities to create containers dynamically based on function
requirements, and to stage containers to endpoints on-demand. We
will also explore techniques for optimizing performance, for exam-
ple by sharing containers among functions with similar dependen-
cies and developing resource-aware scheduling algorithms. funcX
is open source and available at https://github.com/funcx-faas.

ACKNOWLEDGMENT

This work was supported in part by Laboratory Directed Research
and Development funding from Argonne National Laboratory un-
der U.S. Department of Energy under Contract DE-AC02-06CH11357
and used resources of the Argonne Leadership Computing Facility.

REFERENCES

] Amazon Lambda. https://aws.amazon.com/lambda. Accessed April 20, 2020.

] Apache OpenWhisk. http://openwhisk.apache.org/. Accessed April 20, 2020.
3] AWS Greengrass. https://aws.amazon.com/greengrass/. Accessed April 20, 2020.

] Azure Functions. https://azure.microsoft.com/en-us/services/functions/. Ac-
cessed April 20, 2020.

] Dask. http://docs.dask.org/en/latest/. Accessed April 20, 2020.
[6] Fn project. https://fnproject.io. Accessed April 20, 2020.

] Google Cloud Functions. https://cloud.google.com/functions/. Accessed April
20, 2020.
[8] IBM Cloud Functions. https://www.ibm.com/cloud/functions. Accessed April 20,

2020.

[9] Kubeless. https://kubeless.io. Accessed April 20, 2020.
Linux containers. https://linuxcontainers.org. Accessed April 20, 2020.
Microsoft Azure Functions Documentation. https://docs.microsoft.com/en-us/
azure/azure-functions/functions-scale. Accessed April 20, 2020.
Apache Hadoop. https://hadoop.apache.org/. Accessed April 20, 2020.
Apache Spark. https://spark.apache.org/. Accessed April 20, 2020.
L. E. Akkus, et al. 2018. SAND: Towards high-performance serverless computing.
In USENIX Annual Technical Conference. 923-935.
Y. Babuji, et al. 2019. Parsl: Pervasive Parallel Programming in Python. In 28th
International Symposium on High-Performance Parallel and Distributed Computing
(HPDC’19). ACM, 25-36.
1. Baldini, et al. 2017. Serverless computing: Current trends and open problems.
In Research Advances in Cloud Computing. Springer, 1-20.
1. Baldini, et al. 2016. Cloud-native, event-based programming for mobile appli-
cations. In Intl Conf. on Mobile Software Engineering and Systems. ACM, 287-288.
K. Chard, et al. 2014. Efficient and Secure Transfer, Synchronization, and Sharing
of Big Data. IEEE Cloud Computing 1, 3 (2014), 46-55.
R. Chard, et al. 2019. DLHub: Model and data serving for science. In 33rd IEEE
International Parallel and Distributed Processing Symposium.
CMS collaboration. 2019. COFFEA - Columnar Object Framework For Effective
Analysis. In 24th Intl Conf. on Computing in High Energy and Nuclear Physics.
[21] F.De Carlo. Automo. https://automo.readthedocs.io. Accessed April 20, 2020.
[22] J. Duarte, et al. 2018. Fast inference of deep neural networks in FPGAs for particle
physics. Journal of Instrumentation 13, 07 (2018), P07027.
R. M. Fano. 1965. The MAC system: The computer utility approach. IEEE Spectrum
2,1(1965), 56-64.
[24] J. Forde, et al. 2018. Reproducible research environments with repo2docker. In
Workshop on Reproducibility in Machine Learning.

[16]
[17]
[18]
[19]

[20]

[23]

L. Foster et al. 2017. Cloud Computing for Science and Engineering. MIT Press.

L. Foster, et al. 2001. The anatomy of the grid: Enabling scalable virtual organiza-
tions. Intl Journal of Supercomputer Applications 15, 3 (2001), 200-222.

G. Fox, et al. 2017. Status of serverless computing and function-as-a-service
(FaaS) in industry and research. arXiv preprint arXiv:1708.08028 (2017).

G. Fox et al. 2017. Conceptualizing a computing platform for science beyond
2020. In IEEE 10th International Conference on Cloud Computing. 808-810.

K. Hightower, et al. 2017. Kubernetes: Up and running dive into the future of
infrastructure (1st ed.). O’Reilly Media, Inc.

B. Hindman, et al. 2011. Mesos: A platform for fine-grained resource sharing in
the data center. In 8th USENIX Conf. on Networked Sys. Design and Impl. 295-308.
D. M. Jacobsen et al. 2015. Contain this, unleashing Docker for HPC. Cray User
Group (2015).

G. Kiar, et al. 2019. A serverless tool for platform agnostic computational experi-
ment management. Frontiers in Neuroinformatics 13 (2019), 12.

K. Krauter, et al. 2002. A taxonomy and survey of grid resource management
systems for distributed computing. Software: Practice and Experience 32, 2 (2002),
135-164.

G. M. Kurtzer, et al. 2017. Singularity: Scientific containers for mobility of
compute. PloS one 12, 5 (2017), e0177459.

M. Malawski. 2016. Towards serverless execution of scientific workflows—
HyperFlow case Ssudy. In Workshop on Workflows in Support of Large-Scale
Science. 25-33.

D. Merkel. 2014. Docker: Lightweight Linux containers for consistent develop-
ment and deployment. Linux Journal 239 (2014), 2.

D. S. Milojicic, et al. 2002. Peer-to-Peer Computing. Technical Report.

D. Parkhill. 1966. The Challenge of the Computer Utility. Addison-Wesley.

A. K. Paul, et al. 2017. Toward scalable monitoring on large-scale storage for
software defined cyberinfrastructure. In 2nd Joint Intl. Workshop on Parallel Data
Storage & Data Intensive Scalable Computing Systems (PDSW-DISCS °17). 49-54.
J. Pivarski, et al. 2017. Fast access to columnar, hierarchically nested data via
code transformation. In IEEE International Conference on Big Data. 253-262.

R. Priedhorsky et al. 2017. CharlieCloud: Unprivileged containers for user-
defined software stacks in HPC. In International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 36.

M. A. Rodriguez et al. 2019. Container-based cluster orchestration systems: A
taxonomy and future directions. Software: Practice and Experience 49, 5 (2019),
698-719.

K. Seymour, et al. 2002. Overview of GridRPC: A remote procedure call API for
grid computing. In Grid Computing. 274-278.

T. J. Skluzacek, et al. 2019. Serverless workflows for indexing large scientific data.
In 5th International Workshop on Serverless Computing (WOSC’19). ACM, 43-48.
J. Spillner, et al. 2017. Faaster, better, cheaper: The prospect of serverless scientific
computing and HPC. In Latin American High Performance Computing Conference.
154-168.

J. Stubbs, et al. 2017. Containers-as-a-service via the Actor Model. In 11th Gateway
Computing Environments Conference.

D. Thain, et al. 2005. Distributed computing in practice: the Condor experience.
Concurrency - Practice and Experience 17, 2-4 (2005), 323-356.

S. Tuecke, et al. 2016. Globus Auth: A research identity and access management
platform. In 12th IEEE International Conference on e-Science. 203-212.

M. Turilli, et al. 2018. A comprehensive perspective on pilot-job systems. Comput.
Surveys 51, 2 (2018), 43.

] B. Varghese, et al. 2019. Cloud futurology. Computer 52, 9 (2019), 68-77.

L. Wang, et al. 2018. Peeking behind the curtains of serverless platforms. In
USENIX Annual Technical Conference. 133-146.

D. G. Waterman, et al. 2013. The DIALS framework for integration software.
CCP4 Newslett. Protein Crystallogr 49 (2013), 13-15.

https://github.com/funcx-faas
https://aws.amazon.com/lambda
http://openwhisk.apache.org/
https://aws.amazon.com/greengrass/
https://azure.microsoft.com/en-us/services/functions/
http://docs.dask.org/en/latest/
https://fnproject.io
https://cloud.google.com/functions/
https://www.ibm.com/cloud/functions
https://kubeless.io
https://linuxcontainers.org
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://hadoop.apache.org/
https://spark.apache.org/
https://automo.readthedocs.io

	Abstract
	1 Introduction
	2 Requirements
	3 Conceptual Model
	4 Architecture and Implementation
	4.1 The funcX Service
	4.2 Function Containers
	4.3 The funcX Endpoint
	4.4 Managing Compute Infrastructure
	4.5 Container Management
	4.6 Serialization and Data Management
	4.7 Optimizations
	4.8 Security Model

	5 Evaluation
	5.1 Latency
	5.2 Scalability and Throughput
	5.3 Elasticity
	5.4 Fault Tolerance
	5.5 Optimizations

	6 Experiences with funcX
	7 Related Work
	8 Conclusion
	References

