
funcX: A Federated Function

Serving Fabric for Science
Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard,
Ben Blaiszik, Ben Galewsky, Daniel S. Katz, Ian Foster, Kyle Chard

2

Serverless computing

Provider runs infrastructure and manages
allocation of resources

Function as a Service (FaaS)

• Pick a runtime (Python/JS/R etc.)
• Write function code
• Run (and scale)

Low latency, on-demand, elastic scaling

Combine functions (e.g., workflows) to solve
complex problems

3

Function as a service in science?

1. Support new workloads by decomposing
applications into functions

• Real-time, interactive, stream processing

• Simplify development, maintenance, testing

2. Facilitate use of diverse compute resources

• Abstract compute infrastructure

3. Enable fluid function execution across the
heterogeneous computing continuum

• Containers enable portability and sandboxing

➔ funcX: high performance and federated function as a service

4

Scientific workloads are becoming more granular

5

Using existing computing infrastructure has

significant barriers
• Complex queuing systems with unpredictable

delays

• Coarse allocation blocks

• Not designed for short-duration tasks with
minimal resource needs

• High learning curve and lack of portability

• Translation to different schedulers (and
update when they inevitably break)

• Heterogeneous architectures

• Different modules and source code

• Different container technology

There is an impedance mismatch between short duration function
workloads and existing infrastructure available to scientific users

6

G

B
TB PB EB

Specialization demands distribution

▪ As we face the end of Moore’s law we are seeing increasing
specialization

– Establishes a continuum of computing capacity where flexible devices can run
many types of tasks poorly and specialized devices can few tasks very well

▪ Increasing specialization leads to distribution => remote and portable
computing

Compute and storage continuum

Edge devices Laboratory machines HPC

7

Computation should be fluid: Trigger analysis in

high energy physics

Nhan Tran, FermiLab, et al. arXiv:1904.08986

Remote: 30 + 10 +10 = 50 msec

40x acceleration

Local: 2000 msec

Top quark jet tagging

and neutrino event

classification

(based on ResNet) FPGA: 30 msec
CPU: 2 sec

8

Remote execution is not new ...

• We have long strived to compute wherever
it makes the most sense:
• Resource availability, data location, analysis time,

wait time, software licenses, etc.

• Remote computing has always been
complex and expensive, however we
now have:
• High speed networks

• Universal trust fabrics

• Containers

9

FuncX: a function serving ecosystem for science

Functions:
– Register once, run anywhere, any time

Endpoints:
– Dynamically provision resources, deploy containers,

and execute functions

– Exploit local architecture/accelerators

funcX Service:
– Register and share endpoints

– Register, share, run functions

Turn any machine into a function serving
endpoint

Route functions to remote endpoints
– Closest, cheapest, fastest, accelerators …

10

Transform clouds, clusters, and supercomputers into

high-performance function serving systems

10

EP(x) EP(x) EP(x) EP(x)

EP(x) registry

11

Register functions for execution on any funcX endpoint

11

EP(x) EP(x) EP(x) EP(x)

EP(x) registry

Registration
f(x) + dependencies

12

Register functions for execution on any funcX endpoint

12

EP(x) EP(x) EP(x) EP(x)

EP(x) registry

repo2dockerRegister

f(x) g(x)

h(x) k(x)

Registration
f(x) + dependencies

13

Reliably and scalably execute registered functions on

any funcX endpoint

13

EP(x) EP(x) EP(x) EP(x)

Execution
f(x) [1,2,3, ..]

g(x) [‘a’, ‘b’, ‘c’, …]

f(x)

g(x)

g(x)

g(x)

14

Deploying a funcX endpoint

• Pip install funcX (e.g., using Conda)

• Authenticate and register with the
funcX service

• Configure the endpoint for the
local resources (using Parsl)

15

Coding the Computing Continuum with funcX

Portable code Any access Any computer

Python
Docker, Shifter,

Singularity

Clusters,
clouds, HPC,
accelerators

SSH, Globus,
cluster or HPC

scheduler

1. Define Python functions and register
them with funcX

▪ Codes are serialized and stored on
the cloud

▪ Registration returns a UUID for the
function which is used for invocation

2. Run the function on a specified
endpoint

▪ args* and kwargs* are serialized and
sent to funcX

▪ Function code and inputs routed to
endpoint

3. Retrieve Results
▪ Inspect status, wait on results,

retrieve outputs

16

Demo

Setup an endpoint
$ conda create –n funcx python=3.6

$ pip install funcx

$ funcx-endpoint configure <ENDPOINT_NAME>

$ funcx-endpoint start <ENDPOINT_NAME>

Run a function

from funcx.sdk.client import FuncXClient

fxc = FuncXClient()

def funcx_sum(items):

return sum(items)

func_uuid = fxc.register_function(funcx_sum)

res = fxc.run(items, endpoint_id=<UUID>,
function_id=func_uuid)

fxc.get_result(res)

17

funcX service: fire-and-forget managed function

execution

REST Web interface

• Register and manage endpoints
• Publish and invoke Python functions
• Globus Auth for authn/z

Redis store

• Store and share functions
• Track and allocate tasks
• Reliable endpoint task queues

Endpoint forwarders

• Forward serialized functions and
inputs for execution

18

funcX endpoint: high performance function

execution on arbitrary computers

Secure communication

• Securely connect out to forwarder for
registration

• ZeroMQ for low latency comm.
• Retrieve and queue tasks

Compute abstraction

• Acquire nodes from diverse compute
resources (using Parsl)

• Deploy workers inside containers to
nodes

Endpoint

• Report state, usage, and liveness

19

funcX scales to 100K+ workers

• funcX endpoints deployed on ALCF Theta and NERSC Cori

• Strong scaling (100K concurrent functions) shows good scaling up to 2K
containers even with short sleep tasks

• Weak scaling (10 tasks per container) shows scaling to 131K concurrent
containers (1.3M tasks)

•)

20

Elastic execution irrespective of underlying system

• funcX agent deployed on a
Kubernetes cluster

• Each function is registered in a
container and allowed to use 0-
10 pods (unit of execution)

• FuncX elastically scales active
pods (bottom) based on
workload (top)

21

funcX recovers from worker, manager, and endpoint
failures

22

Optimizing performance:
prefetching and Batching

23

Scheduling heterogenous
tasks over heterogenous
endpoints

• Experimenting with scheduling
across heterogenous funcX
endpoints
• Raspberry Pis, Desktops, Cloud

instances, GPUs

• Three scheduling algorithms
• Round robin, Fastest endpoint,

smallest ETA

• Three function types of three sizes
• Matrix multiplication, map

reduce, file I/O

• Smaller tasks distributed across
slower endpoints

23

24

MD

The Manufacturing and ML platform (MDML)

Example application: Manufacturing

Compute and storage continuum

Edge devices Laboratory machines HPC

1. Instrument sensors
stream data to the MDML

2. Use FaaS to analyze
data on-demand

3. FaaS tasks distributed
across the computing continuum

4. Results are used to
guide the experimentf(X)

funcX

Flame spray
pyrolysis, MERF

Grafana Real-Time Dashboards

25

Example application: Serial Crystallography

26

Example application: DLHub

27

Lessons learned applying funcX to science use cases

✓ Abstracts the complexity of using diverse compute resources
✓ Simplicity: automatic scaling, single interface
✓ Flexible web-based authentication model
✓ Enables event-based processing and automated pipelines
✓ Increases portability between sites, systems, etc.
✓ Resources can be used efficiently and opportunistically
✓ Enables secure function sharing with collaborators

 FaaS is not suitable for some applications
 Ratio of data size to compute has to be reasonable
 Containerization does not always provide entirely portable codes
 Coarse allocation models do not map well to fine grain/short functions
 Decomposing applications isn’t always easy (or possible)

28

Parallel programming in Python

Apps define opportunities for parallelism
• Python apps call Python functions
• Bash apps call external applications

Apps return “futures”: a proxy for a result
that might not yet be available

Apps run concurrently respecting data
dependencies. Natural parallel programming!

Parsl scripts are independent of where they
run. Write once run anywhere!

pip install parsl

Try Parsl: https://mybinder.org/v2/gh/Parsl/parsl-tutorial/master

29

funcX creates a federated FaaS ecosystem for science

funcX is a federated FaaS system
designed to meet the requirements of
scientific computing

Enables fluid execution by dispatching
functions to wherever makes the most
sense

Initial deployments scale to 130K+
concurrent workers and >1.2M
functions

http://github.com/funcx-faas

30

http://funcx.org

https://mybinder.org/v2/gh/funcx-faas/funcx/master

https://mybinder.org/v2/gh/funcx-faas/funcx/master

